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(Received 24 June 1996)

A recent work by Shabana [1] addressed an important issue on selecting different sets of
modes for problems of elastic beams that undergo large rigid-body displacements.
Extensive works on flexible bodies and rotating beams have been conducted with different
assumptions of boundary conditions for the beam’s ends (sample lists can be found in
references [1–3]). The classical models with clamped and pinned ends are commonly used
in these works. In dealing with the related topic, Shabana [1] demonstrated that different
mode shapes that correspond to different sets of natural frequencies can be used to obtain
the same resonance conditions by using simple co-ordinate transformations. Two classical
beam models with simply supported and free-free ends were first considered [1]. The
relationship between the boundary conditions and the co-ordinate systems was discussed.
The equations of beam vibration were then obtained by using the following two mode
shapes: fss (x)= sin (px/l) and fmff (x)=fff −fff (0), where fmff =cos (lx/l)+ cosh (lx/
l)− s[sin (lx/l)+ sinh (lx/l)] and fff (0)=2. The modified mode shape fff was generated
from the classical free-free shape by defining a new co-ordinate system with a rigid
translation, fff (0). The two shape models were then applied to derive the uncoupled
equation of motion in terms of modal co-ordinates: mjq̈j + kjqj =Qj , where
mj = fl

0
raf2

j dx, kj = fl

0
EIz (12fj /1x2)2 dx, and Qj = fl

0
Ffj dx [4].

Assuming the beam is subjected to a harmonic force, F0 sin vft, acting at its center, the
final equation of motion associated with the first mode of vibration was given by
q̈+v2q=B(F0/m) sin vft, where B is a parameter defined for later discussion. The results
for the simply supported and modified free-free cases were given as [1]

v2
ss =(3·142/l)4 (EIz/ra), Bss =2 and v2

mff =(3·163/l)4(EIz/ra), Bmff =−0·64312.

Furthermore, the solutions for q were obtained [1]:

qss =
BssF0/(3·142)4(EIz /l3)

1−v2
f /v2

ss
sin vft, qmff =

BmffF0/(3·163)4(EIz /l3)
1−v2

f /v2
mff

sin vft.

The beam deflection at the midpoint was then evaluated by using n =x= l/2 =f =x= l/2q(t). It
was mentioned that the physical displacements using the two different sets of modes are
in good agreement [1]. In fact, the steady-state response of the simply supported beam can
be obtained by the Duhamel integral [5, p. 438],

n=[2F0f =x= l/2/(mv2)][f sin vft/(1−v2
f /v2)].
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Another parameter, C =x= l/2 =f =x= l/2B is now defined. In dealing with the same beam but
having the force acting at other positions, the following results are found:

x/l=1/10, Css =0·191 and Cmff =0·171, c Cmff /Css =0·897;

x/l=1/8, Css =0·293 and Cmff =0·266, c Cmff /Css =0·907;

x/l=1/6, Css =0·5 and Cmff =0·463, c Cmff /Css =0·926;

x/l=1/4, Css =1 and Cmff =0·967, c Cmff /Css =0·967;

whereas from reference [1],

x/l=1/2, Css =2 and Cmff =2·068, c Cmff /Css =1·034.

It can be seen that Cmff 1Css for the center-loaded beams, but the ratio Cmff /Css decreases
as the force is acting away from the center.

Next turning to the responses obtained by using the two models: nss =fssqss and
nmff =fmffqmff , the final form of their ratio is found to be

nr = nmff/nss =0·9737Cmff (1−0·01026v̄2)/[Css (1−0·00999v̄2)],

in which v̄2 =v2
f ral4/(EIz ) is a non-dimensional parameter. The response ratio is plotted

in Figure 1 as functions of v̄2 for different loading positions. Again, the ratio associated
with the force acting at x= l/2 is almost one, but those with other loading positions can
be less than 0·87. Moreover, the concept of a floating frame introduced in reference [1]
was only demonstrated in terms of fundamental mode vibration, not based on multi-modes
models.

It is well-known that a clamped-free model can lead to a good approximation if the
rotation of the hub is treated as a degree of freedom [6–8]. One may use the base rotation
or translation as a separate degree of freedom in many cases.

Figure 1. Response ratio versus frequency parameter for different loading positions: x/l: ——, 1/2; - - -, 1/4;
· · · ·, 1/6; - · - · -, 1/8; - ·· - ·· -, 1/10.
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The main objective of the work presented in reference [1] was to demonstrate that the
natural frequency of the linear problem does not have a significant effect on the non-linear
solution of the multibody dynamic equation. The analysis presented in this reference
demonstrated the relationship between the end conditions and the selection of the
deformable body co-ordinate system. It was demonstrated in reference [1] that different
sets of modes that correspond to different sets of end conditions that define significantly
different sets of natural frequencies can lead to approximately the same solution provided
that similar deformation shapes are used. The results presented in Professor Low’s letter
confirm the conclusions obtained in reference [1] since these results can be used to
demonstrate that the differences in the shapes can lead to some discrepancy in the results
obtained using different sets of modes. The difference of 13% between the two models
when the load applies close to the end of the beam is not proportional to the difference
between the natural frequencies of the two models. Furthermore, close to the end of the
beam, it is more likely that the deformation is small compared to the midpoint deflection,
and therefore, the error of 13% may not be significant. It is also expected that more
discrepancies can be found when the loads apply at points where the assumed shapes used
in the two models have more significant differences.


